Part Number Hot Search : 
4884N C74HC2 C74HC2 3500S G8200 786042 LQW18AN 32423
Product Description
Full Text Search
 

To Download LT6234CDDTRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 623345fc lt6233/lt6233-10 lt6234/lt6235 typical a pplica t ion fea t ures descrip t ion 60mhz, rail-to-rail output, 1.9nv/ hz, 1.2ma op amp family low noise low power instrumentation amplifer a pplica t ions n low noise voltage: 1.9nv/ hz n low supply current: 1.2ma/amp max n low offset voltage: 350 v max n gain-bandwidth product: lt6233: 60mhz; a v 1 lt6233-10: 375mhz; a v 10 n wide supply range: 3v to 12.6v n output swings rail-to-rail n common mode rejection ratio: 115db typ n output current: 30ma n operating temperature range: C40c to 85c n lt6233 shutdown to 10a maximum n lt6233/lt6233-10 in a low profle (1mm) thinsot? package n dual lt6234 in 8-pin so and tiny dfn packages n lt6235 in a 16-pin ssop package n ultrasound amplifers n low noise, low power signal processing n active filters n driving a/d converters n rail-to-rail buffer amplifers l , lt, ltc, ltm, linear technology and the linear logo are registered trademarks of linear technology corporation. thinsot is a trademark of linear technology corporation. all other trademarks are the property of their respective owners. noise voltage and unbalanced noise current vs frequency the lt ? 6233/lt6234/lt6235 are single/dual/quad low noise, rail-to-rail output unity-gain stable op amps that feature 1.9nv/ hz noise voltage and draw only 1.2ma of supply current per amplifer. these amplifers combine very low noise and supply current with a 60mhz gain- bandwidth product, a 17v/s slew rate and are optimized for low supply voltage signal conditioning systems. the lt6233-10 is a single amplifer optimized for higher gain applications resulting in higher gain bandwidth and slew rate. the lt6233 and lt6233-10 include an enable pin that can be used to reduce the supply current to less than 10a. the amplifer family has an output that swings within 50mv of either supply rail to maximize the signal dynamic range in low supply applications and is specifed on 3.3v, 5v and 5v supplies. the e n ? i supply product of 2.1 per amplifer is among the most noise effcient of any op amp. the lt6233/lt6233-10 are available in the 6-lead sot - 23 package and the lt6234 dual is available in the 8-pin so package with standard pinouts. for compact layouts, the dual is also available in a tiny dual fne pitch leadless package (dfn). the lt6235 is available in the 16-pin ssop package. r6 499 v s + a v = 20 bw = 2.8mhz v s = 1.5v to 5v v out v s ? in + in ? v s ? v s + r7 499 r4 499 r2 475 r1 49.9 r3 475 r5 499 en i s = 3ma e n = 8v rms input referred, measurement bw = 4mhz 623345 ta01a ? + lt6233 1/2 lt6234 1/2 lt6234 frequency (hz) noise voltage (nv/ hz) 6 5 4 3 2 1 0 10 1k 10k 100k 623345 ta01b 100 v s = 2.5v t a = 25c v cm = 0v noise voltage noise current unbalanced noise current (pa/hz) 6 5 4 3 2 1 0
lt6233/lt6233-10 lt6234/lt6235 2 623345fc a bsolu t e maxi m u m r a t ings total supply voltage (v + to v C ) .............................. 12. 6v input current (note 2) ......................................... 40ma output short-circuit duration (note 3) ............ in defnite operating temperature range (note 4).... C40c to 85c specifed temperature range (note 5) .... C 40c to 85c junction temperature ........................................... 15 0c (note 1) 6 v + 5 enable 4 ?in out 1 top view s6 package 6-lead plastic tsot-23 v ? 2 +in 3 t jmax = 150c, ja = 250c/w top view dd package 8-lead (3mm 3mm) plastic dfn 5 6 7 8 4 3 2 1out a ?in a +in a v ? v + out b ?in b +in b + ? + ? t jmax = 125c, ja = 160c/w underside metal connected to v C (pcb connection optional) top view v + out b ?in b +in b out a ?in a +in a v ? s8 package 8-lead plastic so 1 2 3 4 8 7 6 5 + ? + ? t jmax = 150c, ja = 190c/w top view gn package 16-lead narrow plastic ssop 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 out a ?in a +in a v + +in b ?in b out b nc out d ?in d +in d v ? +in c ?in c out c nc + ? + ? + ? + ? a d b c t jmax = 150c, ja = 135c/w p in c on f igura t ion junction temperature (dd package) .................... 125 c storage temperature range .................. C 65c to 150c storage temperature range (dd package) ........................................ C 65c to 125c lead temperature (soldering, 10 sec) ................... 3 00c
3 623345fc lt6233/lt6233-10 lt6234/lt6235 e lec t rical c harac t eris t ics t a = 25c, v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. o r d er i n f or m a t ion lead free finish tape and reel part marking* package description specified temperature range lt6233cs6#pbf lt6233cs6#trpbf ltafl 6-lead plastic ts0t-23 0c to 70c lt6233is6#pbf lt6233is6#trpbf ltafl 6-lead plastic ts0t-23 C40c to 85c lt6233cs6-10#pbf lt6233cs6-10#trpbf ltafm 6-lead plastic ts0t-23 0c to 70c lt6233is6-10#pbf lt6233is6-10#trpbf ltafm 6-lead plastic ts0t-23 C40c to 85c lt6234cs8#pbf lt6234cs8#trpbf 6234 8-lead plastic so 0c to 70c lt6234is8#pbf lt6234is8#trpbf 6234i 8-lead plastic so C40c to 85c lt6234cdd#pbf lt6234cdd#trpbf laet 8-lead (3mm 3mm) plastic dfn 0c to 70c lt6234idd#pbf lt6234idd#trpbf laet 8-lead (3mm 3mm) plastic dfn C40c to 85c lt6235cgn#pbf lt6235cgn#trpbf 6235 16-lead narrow plastic ssop 0c to 70c lt6235ign#pbf lt6235ign#trpbf 6235i 16-lead narrow plastic ssop C40c to 85c consult ltc marketing for parts specifed with wider operating temperature ranges. *the temperature grade is identifed by a label on the shipping container. consult ltc marketing for information on non-standard lead based fnish parts. for more information on lead free part marking, go to: http://www.linear.com/leadfree/ for more information on tape and reel specifcations, go to: http://www.linear.com/tapeandreel/ symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 lt6234s8, lt6235gn lt6234dd 100 50 75 500 350 450 v v v input offset voltage match (channel-to-channel) (note 6) 80 600 v i b input bias current 1.5 3 a i b match (channel-to-channel) (note 6) 0.04 0.3 a i os input offset current 0.04 0.3 a input noise voltage 0.1hz to 10hz 220 nv p-p e n input noise voltage density f = 10khz, v s = 5v 1.9 3 nv/ hz i n input noise current density, balanced source input noise current density, unbalanced source f = 10khz, v s = 5v, r s = 10k f = 10khz, v s = 5v, r s = 10k 0.43 0.78 pa/hz pa/hz input resistance common mode differential mode 22 25 m k c in input capacitance common mode differential mode 2.5 4.2 pf pf a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 v s = 5v, v o = 0.5v to 4.5v, r l = 1k to v s /2 73 18 140 35 v/mv v/mv v s = 3.3v, v o = 0.65v to 2.65v, r l = 10k to v s /2 v s = 3.3v, v o = 0.65v to 2.65v, r l = 1k to v s /2 53 11 100 20 v/mv v/mv v cm input voltage range guaranteed by cmrr, v s = 5v, 0v guaranteed by cmrr, v s = 3.3v, 0v 1.5 1.15 4 2.65 v v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v v s = 3.3v, v cm = 1.15v to 2.65v 90 85 115 110 db db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v 84 115 db
lt6233/lt6233-10 lt6234/lt6235 4 623345fc e lec t rical c harac t eris t ics t a = 25c, v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. symbol parameter conditions min typ max units psrr power supply rejection ratio v s = 3v to 10v 90 115 db psrr match (channel-to-channel) (note 6) v s = 3v to 10v 84 115 db minimum supply voltage (note 7) 3 v v ol output voltage swing low (note 8) no load i sink = 5ma v s = 5v, i sink = 15ma v s = 3.3v, i sink = 10ma 4 75 165 125 40 180 320 240 mv mv mv mv v oh output voltage swing high (note 8) no load i source = 5ma v s = 5v, i source = 15ma v s = 3.3v, i source = 10ma 5 85 220 165 50 195 410 310 mv mv mv mv i sc short-circuit current v s = 5v v s = 3.3v 40 35 55 50 ma ma i s supply current per amplifer disabled supply current per amplifer enable = v + C 0.35v 1.05 0.2 1.2 10 ma a i enable enable pin current enable = 0.3v C25 C75 a v l enable pin input voltage low 0.3 v v h enable pin input voltage high v + C 0.35 v output leakage current enable = v + C 0.35v, v o = 1.5v to 3.5v 0.2 10 a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v 76 s gbw gain-bandwidth product frequency = 1mhz, v s = 5v lt6233-10 55 320 mhz mhz sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v 10 15 v/s lt6233-10, v s = 5v, a v = C10, r l = 1k, v o = 1.5v to 3.5v 80 v/s fpbw full-power bandwidth v s = 5v, v out = 3v p-p (note 9) 1.06 1.6 mhz lt6233-10, hd2 = hd3 1% 2.2 mhz t s settling time (lt6233, lt6234, lt6235) 0.1%, v s = 5v, v step = 2v, a v = C1, r l = 1k 175 ns
5 623345fc lt6233/lt6233-10 lt6234/lt6235 symbol parameter conditions min typ max unit v os input offset voltage lt6233cs6, lt6233cs6-10 lt6234cs8, lt6235cgn lt6234cdd l l l 600 450 550 v v v input offset voltage match (channel-to-channel) (note 6) l 800 v v os tc input offset voltage drift (note 10) v cm = half supply l 0.5 3.0 v/c i b input bias current l 3.5 a i b match (channel-to-channel) (note 6) l 0.4 a i os input offset current l 0.4 a a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 v s = 5v, v o = 0.5v to 4.5v, r l = 1k to v s /2 l l 47 12 v/mv v/mv v s = 3.3v, v o = 0.65v to 2.65v, r l = 10k to v s /2 v s = 3.3v, v o = 0.65v to 2.65v, r l = 1k to v s /2 l l 40 7.5 v/mv v/mv v cm input voltage range guaranteed by cmrr v s = 5v, 0v vs = 3.3v, 0v l l 1.5 1.15 4 2.65 v v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v v s = 3.3v, v cm = 1.15v to 2.65v l l 90 85 db db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v l 84 db psrr power supply rejection ratio v s = 3v to 10v l 90 db psrr match (channel-to-channel) (note 6) v s = 3v to 10v l 84 db minimum supply voltage (note 7) l 3 v v ol output voltage swing low (note 8) no load i sink = 5ma v s = 5v, i sink = 15ma v s = 3.3v, i sink = 10ma l l l l 50 195 360 265 mv mv mv mv v oh output voltage swing high (note 8) no load i source = 5ma v s = 5v, i source = 15ma v s = 3.3v, i source = 10ma l l l l 60 205 435 330 mv mv mv mv i sc short-circuit current v s = 5v v s = 3.3v l l 35 30 ma ma i s supply current per amplifer disabled supply current per amplifer enable = v + C 0.25v l l 1 1.45 ma a i enable enable pin current enable = 0.3v l C85 a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l v + C 0.25 v output leakage current enable = v + C 0.25v, v o = 1.5v to 3.5v l 1 a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v l 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v l 120 s sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v l 9 v/s lt6233-10, a v = C10, r l = 1k, v o = 1.5v to 3.5v l 75 v/s fpbw full-power bandwidth (note 9) v s = 5v, v out = 3v p-p ; lt6233c, lt6234c, lt6235c l 955 khz e lec t rical c harac t eris t ics the l denotes the specifcations which apply over the 0c < t a < 70c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted.
lt6233/lt6233-10 lt6234/lt6235 6 623345fc e lec t rical c harac t eris t ics the l denotes the specifcations which apply over the C40c < t a < 85c temperature range. v s = 5v, 0v; v s = 3.3v, 0v; v cm = v out = half supply, enable = 0v, unless otherwise noted. (note 5) symbol parameter conditions min typ max units v os input offset voltage lt6233is6, lt6233is6-10 lt6234is8, lt6235ign lt6234idd l l l 700 550 650 v v v input offset voltage match (channel-to-channel) (note 6) l 1000 v v os tc input offset voltage drift (note 10) v cm = half supply l 0.5 3 v/c i b input bias current l 4 a i b match (channel-to-channel) (note 6) l 0.4 a i os input offset current l 0.5 a a vol large-signal gain v s = 5v, v o = 0.5v to 4.5v, r l = 10k to v s /2 v s = 5v, v o = 0.5v to 4.5v, r l = 1k to v s /2 l l 45 11 v/mv v/mv v s = 3.3v, v o = 0.65v to 2.65v, r l = 10k to v s /2 v s = 3.3v, v o = 0.65v to 2.65v, r l = 1k to v s /2 l l 38 7 v/mv v/mv v cm input voltage range guaranteed by cmrr v s = 5v, 0v v s = 3.3v, 0v l l 1.5 1.15 4 2.65 v v cmrr common mode rejection ratio v s = 5v, v cm = 1.5v to 4v v s = 3.3v, v cm = 1.15v to 2.65v l l 90 85 db db cmrr match (channel-to-channel) (note 6) v s = 5v, v cm = 1.5v to 4v l 84 db psrr power supply rejection ratio v s = 3v to 10v l 90 db psrr match (channel-to-channel) (note 6) v s = 3v to 10v l 84 db minimum supply voltage (note 7) l 3 v v ol output voltage swing low (note 8) no load i sink = 5ma v s = 5v, i sink = 15ma v s = 3.3v, i sink = 10ma l l l l 50 195 370 275 mv mv mv mv v oh output voltage swing high (note 6) no load i source = 5ma v s = 5v, i source = 15ma v s = 3.3v, i source = 10ma l l l l 60 210 445 335 mv mv mv mv i sc short-circuit current v s = 5v v s = 3.3v l l 30 20 ma ma i s supply current per amplifer disabled supply current per amplifer enable = v + C 0.2v l l 1 1.5 ma a i enable enable pin current enable = 0.3v l C100 a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l v + C 0.2 v output leakage current enable = v + C 0.2v, v o = 1.5v to 3.5v l 1 a t on turn-on time enable = 5v to 0v, r l = 1k, v s = 5v l 500 ns t off turn-off time enable = 0v to 5v, r l = 1k, v s = 5v l 135 s sr slew rate v s = 5v, a v = C1, r l = 1k, v o = 1.5v to 3.5v l 8 v/s lt6233-10, a v = C10, r l = 1k, v o = 1.5v to 3.5v l 70 v/s fpbw full-power bandwidth (note 9) v s = 5v, v out = 3v p-p ; lt6233i, lt6234i, lt6235i l 848 khz
7 623345fc lt6233/lt6233-10 lt6234/lt6235 e lec t rical c harac t eris t ics t a = 25c, v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. symbol parameter conditions min typ max units v os input offset voltage lt6233s6, lt6233s6-10 lt6234s8, lt6235gn lt6234dd 100 50 75 500 350 450 v v v input offset voltage match (channel-to-channel) (note 6) 100 600 v i b input bias current 1.5 3 a i b match (channel-to-channel) (note 6) 0.04 0.3 a i os input offset current 0.04 0.3 a input noise voltage 0.1hz to 10hz 220 nv p-p e n input noise voltage density f = 10khz 1.9 3.0 nv/ hz i n input noise current density, balanced source input noise current density, unbalanced source f = 10khz, r s = 10k f = 10khz, r s = 10k 0.43 0.78 pa/hz pa/hz input resistance common mode differential mode 22 25 m k c in input capacitance common mode differential mode 2.1 3.7 pf pf a vol large-signal gain v o = 4.5v, r l = 10k v o = 4.5v, r l = 1k 97 28 180 55 v/mv v/mv v cm input voltage range guaranteed by cmrr C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v 90 110 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v 84 120 db psrr power supply rejection ratio v s = 1.5v to 5v 90 115 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v 84 115 db v ol output voltage swing low (note 8) no load i sink = 5ma i sink = 15ma 4 75 165 40 180 320 mv mv mv v oh output voltage swing high (note 8) no load i source = 5ma i source = 15ma 5 85 220 50 195 410 mv mv mv i sc short-circuit current 40 55 ma i s supply current per amplifer disabled supply current per amplifer enable = 4.65v 1.15 0.2 1.4 10 ma a i enable enable pin current enable = 0.3v C35 C85 a v l enable pin input voltage low 0.3 v v h enable pin input voltage high 4.65 v output leakage current enable = 4.65v, v o = 1v 0.2 10 a t on turn-on time enable = 5v to 0v, r l = 1k 900 ns t off turn-off time enable = 0v to 5v, r l = 1k 100 s gbw gain-bandwidth product frequency = 1mhz lt6233-10 42 260 60 375 mhz mhz sr slew rate a v = C1, r l = 1k, v o = C2v to 2v 12 17 v/s lt6233-10, a v = C10, r l = 1k, v o = C2v to 2v 115 v/s fpbw full-power bandwidth v out = 3v p-p (note 9) 1.27 1.8 mhz lt6233-10, hd2 = hd3 1% 2.2 mhz t s settling time (lt6233, lt6234, lt6235) 0.1%, v step = 2v, a v = C1, r l = 1k 170 ns
lt6233/lt6233-10 lt6234/lt6235 8 623345fc e lec t rical c harac t eris t ics the l denotes the specifcations which apply over the 0c < t a < 70c temperature range. v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. symbol parameter conditions min typ max units v os input offset voltage lt6233cs6, lt6233cs6-10 lt6234cs8, lt6235cgn lt6234cdd l l l 600 450 550 v v v input offset voltage match (channel-to-channel) (note 6) l 800 v v os tc input offset voltage drift (note 10) l 0.5 3 v/c i b input bias current l 3.5 a i b match (channel-to-channel) (note 6) l 0.4 a i os input offset current l 0.4 a a vol large-signal gain v o = 4.5v, r l = 10k v o = 4.5v, r l = 1k l l 75 22 v/mv v/mv v cm input voltage range guaranteed by cmrr l C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v l 90 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v l 84 db psrr power supply rejection ratio v s = 1.5v to 5v l 90 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v l 84 db v ol output voltage swing low (note 8) no load i sink = 5ma i sink = 15ma l l l 50 195 360 mv mv mv v oh output voltage swing high (note 8) no load i source = 5ma i source = 15ma l l l 60 205 435 mv mv mv i sc short-circuit current l 35 ma i s supply current per amplifer disabled supply current per amplifer enable = 4.75v l l 1 1.7 ma a i enable enable pin current enable = 0.3v l C95 a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l 4.75 v output leakage current enable = 4.75v, v o = 1v l 1 a t on turn-on time enable = 5v to 0v, r l = 1k l 900 ns t off turn-off time enable = 0v to 5v, r l = 1k l 150 s sr slew rate a v = C1, r l = 1k, v o = C2v to 2v l 11 v/s lt6233-10, a v = C10, r l = 1k, v o = C2v to 2v l 105 v/s fpbw full-power bandwidth (note 9) v out = 3v p-p ; lt6233c, lt6234c, lt6235c l 1.16 mhz
9 623345fc lt6233/lt6233-10 lt6234/lt6235 e lec t rical c harac t eris t ics the l denotes the specifcations which apply over the C40c < t a < 85c temperature range. v s = 5v, v cm = v out = 0v, enable = 0v, unless otherwise noted. (note 5) symbol parameter conditions min typ max units v os input offset voltage lt6233is6, lt6233is6-10 lt6234is8, lt6235ign lt6234idd l l l 700 550 650 v v v input offset voltage match (channel-to-channel) (note 6) l 1000 v v os tc input offset voltage drift (note 10) l 0.5 3 v/c i b input bias current l 4 a i b match (channel-to-channel) (note 6) l 0.4 a i os input offset current l 0.5 a a vol large-signal gain v o = 4.5v, r l = 10k v o = 4.5v, r l = 1k l l 68 20 v/mv v/mv v cm input voltage range guaranteed by cmrr l C3 4 v cmrr common mode rejection ratio v cm = C3v to 4v l 90 db cmrr match (channel-to-channel) (note 6) v cm = C3v to 4v l 84 db psrr power supply rejection ratio v s = 1.5v to 5v l 90 db psrr match (channel-to-channel) (note 6) v s = 1.5v to 5v l 84 db v ol output voltage swing low (note 8) no load i sink = 5ma i sink = 15ma l l l 50 195 370 mv mv mv v oh output voltage swing high (note 8) no load i source = 5ma i source = 15ma l l l 70 210 445 mv mv mv i sc short-circuit current l 30 ma i s supply current per amplifer disabled supply current per amplifer enable = 4.8v l l 1 1.75 ma a i enable enable pin current enable = 0.3v l C110 a v l enable pin input voltage low l 0.3 v v h enable pin input voltage high l 4.8 v output leakage current enable = 4.8v, v o = 1v l 1 a t on turn-on time enable = 5v to 0v, r l = 1k l 900 ns t off turn-off time enable = 0v to 5v, r l = 1k l 160 s sr slew rate a v = C1, r l = 1k, v o = C2v to 2v l 10 v/s lt6233-10, a v = C10, r l = 1k, v o = C2v to 2v l 95 v/s fpbw full-power bandwidth (note 9) v out = 3v p-p ; lt6233i, lt6234i, lt6235i l 1.06 mhz note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: inputs are protected by back-to-back diodes. if the differential input voltage exceeds 0.7v, the input current must be limited to less than 40ma. note 3: a heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefnitely. note 4: the lt6233c/lt6233i the lt6234c/lt6234i, and lt6235c/lt6235i are guaranteed functional over the temperature range of C40c to 85c. note 5: the lt6233c/lt6234c/lt6235c are guaranteed to meet specifed performance from 0c to 70c. the lt6233c/lt6234c/lt6235c are designed, characterized and expected to meet specifed performance from C40c to 85c, but are not tested or qa sampled at these temperatures. the lt6233i/lt6234i/lt6235i are guaranteed to meet specifed performance from C40c to 85c. note 6: matching parameters are the difference between the two amplifers a and d and between b and c of the lt6235; between the two amplifers of the lt6234. cmrr and psrr match are defned as follows: cmrr and psrr are measured in v/v on the matched amplifers. the difference is calculated between the matching sides in v/v. the result is converted to db.
lt6233/lt6233-10 lt6234/lt6235 10 623345fc note 7: minimum supply voltage is guaranteed by power supply rejection ratio test. note 8: output voltage swings are measured between the output and power supply rails. e lec t rical c harac t eris t ics note 9: full-power bandwidth is calculated from the slew rate: fpbw = sr/2v p note 10: this parameter is not 100% tested. typical p er f or m ance c harac t eris t ics input bias current vs common mode voltage input bias current vs temperature output saturation voltage vs load current (output low) v os distribution supply current vs supply voltage (per amplifer) offset voltage vs input common mode voltage (lt6233/lt6234/lt6235) input offset voltage (v) ?200 0 number of units 10 20 30 40 ?100 0 100 200 623345 go1 50 60 ?150 ?50 50 150 v s = 5v, 0v v cm = v + /2 s8 total supply voltage (v) 0 supply current (ma) 6 623345 go2 2 4 8 2.0 1.5 1.0 0.5 0 10 12 14 t a = 125c t a = 25c t a = ?55c input common mode voltage (v) 0 offset voltage (v) 1.5 623345 go3 0.5 1 2 500 400 300 200 100 0 ?100 ?200 ?300 ?400 ?500 3 4 5 2.5 3.5 4.5 t a = ?55c t a = 25c t a = 125c v s = 5v, 0v common mode voltage (v) ?1 input bias current (a) 2 623345 go4 0 1 3 6 5 4 3 2 1 0 ?2 ?1 4 5 6 t a = 125c t a = ?55c t a = 25c v s = 5v, 0v temperature (c) ?50 input bias current (a) 25 623345 go5 ?25 0 50 6 5 4 3 2 1 0 ?1 75 100 125 v cm = 4v v cm = 1.5v v s = 5v, 0v load current (ma) 0.01 0.1 0.0001 output saturation voltage (v) 0.01 10 1 100 10 623345 go6 0.001 0.1 1 v s = 5v, 0v t a = ?55c t a = 125c t a = 25c
11 623345fc lt6233/lt6233-10 lt6234/lt6235 typical p er f or m ance c harac t eris t ics open-loop gain open-loop gain open-loop gain offset voltage vs output current warm-up drift vs time total noise vs total source resistance output saturation voltage vs load current (output high) minimum supply voltage output short-circuit current vs power supply voltage (lt6233/lt6234/lt6235) load current (ma) output saturation voltage (v) 623345 g07 0.01 0.1 0.01 10 1 100 10 0.001 0.1 1 v s = 5v, 0v t a = ?55c t a = 125c t a = 25c total supply voltage (v) 0 offset voltage (mv) 1.5 623345 g08 0.5 1 2 1.0 0.8 0.6 0.4 0.2 0 ?0.2 ?0.4 ?0.6 ?0.8 ?1.0 3 4 5 2.5 3.5 4.5 t a = ?55c t a = 125c t a = 25c v cm = v s /2 power supply voltage (v) 1.5 output short-circuit current (ma) 3.0 623345 go9 2.0 2.5 3.5 80 60 40 20 0 ?20 ?40 ?80 ?60 4.0 4.5 5.0 t a = 125c t a = ?55c t a = ?55c t a = 25c sinking sourcing t a = 25c t a = 125c output voltage (v) 0 input voltage (mv) 1.5 623345 g10 0.5 1.0 2.0 2.5 2.0 1.5 1.0 0.5 0 ?0.5 ?1.0 ?1.5 ?2.0 ?2.5 3.02.5 r l = 100 r l = 1k v s = 3v, 0v t a = 25c output voltage (v) 0 input voltage (mv) 1.5 623345 g11 0.5 1 2 0 3 4 5 2.5 3.5 4.5 r l = 100 r l = 1k v s = 5v, 0v t a = 25c 2.5 2.0 1.5 1.0 0.5 ?0.5 ?1.0 ?1.5 ?2.0 ?2.5 output voltage (v) ?5 input voltage (mv) ?2 623345 g12 ?4 ?3 ?1 0 1 3 5 0 2 4 r l = 100 r l = 1k v s = 5v t a = 25c 2.5 2.0 1.5 1.0 0.5 ?0.5 ?1.0 ?1.5 ?2.0 ?2.5 output current (ma) ?90 offset voltage (mv) 623345 g13 ?60 ?30 2.0 1.5 1.0 0.5 0 ?0.5 ?1.0 ?1.5 ?2.0 0 30 9060 t a = ?55c t a = 125c v s = 5v t a = 25c time after power-up (s) 0 change in offset voltage (v) 20 623345 g14 10 30 40 35 30 25 20 15 10 0 40 50 t a = 25c v s = 5v v s = 2.5v v s = 1.5v total source resistance () 1 total noise (nv/hz) 10 10 1k 10k 100k 623345 g15 0.1 100 100 v s = 2.5v v cm = 0v f = 100khz unbalanced source resistors total noise resistor noise amplifier noise voltage
lt6233/lt6233-10 lt6234/lt6235 12 623345fc typical p er f or m ance c harac t eris t ics open-loop gain vs frequency gain bandwidth and phase margin vs supply voltage slew rate vs temperature output impedance vs frequency common mode rejection ratio vs frequency channel separation vs frequency noise voltage and unbalanced noise current vs frequency 0.1hz to 10hz output voltage noise gain bandwidth and phase margin vs temperature (lt6233/lt6234/lt6235) frequency (hz) noise voltage (nv/hz) 6 5 4 3 2 1 0 10 1k 10k 100k 623345 g16 100 v s = 2.5v t a = 25c v cm = 0v noise voltage noise current unbalanced noise current (pa/hz) 6 5 4 3 2 1 0 5s/div 623345 g17 100nv 100nv/div ?100nv v s = 2.5v temperature (c) ?55 gain bandwidth (mhz) 5 623345 g18 ?25 35 90 80 70 60 40 50 phase margin (deg) 70 60 50 40 65 95 125 v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v phase margin gain bandwidth c l = 5pf r l = 1k v cm = v s /2 frequency (hz) gain (db) 80 70 50 30 0 ?10 60 40 10 20 ?20 phase (deg) 120 100 60 20 ?60 80 40 ?20 ?40 0 ?80 100k 10m 100m 1g 623345 g19 1m c l = 5pf r l = 1k v cm = v s /2 phase gain v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v total supply voltage (v) 0 gain bandwidth (mhz) 6 623345 g20 2 4 8 70 60 50 30 40 phase margin (deg) 80 70 60 50 40 10 12 14 phase margin gain bandwidth t a = 25c c l = 5pf r l = 1k temperature (c) ?55 slew rate (v/s) 5 623345 g21 ?35 ?15 45 20 22 24 26 18 16 14 10 12 85 25 65 105 125 v s = 5v falling v s = 2.5v rising a v = ?1 r f = r g = 1k v s = 2.5v falling v s = 5v rising frequency (hz) 1 output impedance () 10 100k 10m 100m 623345 g22 0.1 1m 1k 100 v s = 5v, 0v a v = 10 a v = 1 a v = 2 frequency (hz) 20 common mode rejection ratio (db) 40 60 80 120 100 10k 100m 100k 1g 10m 623345 g23 0 1m v s = 5v, 0v v cm = v s /2 frequency (hz) 100k channel separation (db) ?40 ?50 ?60 ?70 ?80 ?90 ?100 ?110 ?120 ?130 ?140 1m 10m 100m 623345 g24 a v = 1 t a = 25c v s = 5v
13 623345fc lt6233/lt6233-10 lt6234/lt6235 typical p er f or m ance c harac t eris t ics settling time vs output step (noninverting) settling time vs output step (inverting) maximum undistorted output signal vs frequency distortion vs frequency distortion vs frequency distortion vs frequency power supply rejection ratio vs frequency series output resistance and overshoot vs capacitive load series output resistance and overshoot vs capacitive load (lt6233/lt6234/lt6235) frequency (hz) 20 power supply rejection ratio (db) 40 60 80 120 100 1k 10k 100m 100k 10m 623345 g25 0 1m v s = 5v, 0v t a = 25c v cm = v s /2 negative supply positive supply capacitive load (pf) 10 overshoot (%) 50 45 40 35 30 25 20 15 10 5 0 100 1000 623345 g26 v s = 5v, 0v a v = 1 r s = 10 r s = 20 r s = 50 r l = 50 capacitive load (pf) 10 overshoot (%) 50 45 40 35 30 25 20 15 10 5 0 100 1000 623345 g27 v s = 5v, 0v a v = 2 r s = 10 r s = 20 r s = 50 r l = 50 output step (v) ?4 settling time (ns) 0 623345 g28 ?3 ?2 ?1 1 300 400 350 250 200 150 50 100 2 3 4 1mv 10mv 1mv 10mv v s = 5v t a = 25c a v = 1 + ? 500 v out v in output step (v) ?4 settling time (ns) 0 623345 g29 ?3 ?2 ?1 1 300 400 350 250 200 150 50 100 2 3 4 1mv 10mv 1mv 10mv v s = 5v t a = 25c a v = ?1 + ? 500 500 v out v in frequency (hz) 10k output voltage swing (v p-p ) 10 9 8 7 6 5 4 3 2 100k 1m 10m 623345 g30 v s = 5v t a = 25c hd2, hd3 < ?40dbc a v = ?1 a v = 2 frequency (hz) 10k distortion (dbc) ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g31 v s = 2.5v a v = 1 v out = 2v p-p r l = 100, 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100, 2nd frequency (hz) 10k distortion (dbc) ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g32 v s = 5v a v = 1 v out = 2v p-p r l = 100, 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100, 2nd frequency (hz) 10k distortion (dbc) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g33 v s = 2.5v a v = 2 v out = 2v p-p r l = 100, 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100, 2nd
lt6233/lt6233-10 lt6234/lt6235 14 623345fc typical p er f or m ance c harac t eris t ics distortion vs frequency large-signal response small-signal response (lt6233/lt6234/lt6235) large-signal response output overdrive recovery (lt6233) enable characteristics supply current vs enable pin voltage enable pin current vs enable pin voltage enable pin response time frequency (hz) 10k distortion (dbc) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g34 v s = 5v a v = 2 v out = 2v p-p r l = 100, 3rd r l = 1k, 3rd r l = 1k, 2nd r l = 100, 2nd 2v 0v ?2v 200ns/div 623345 g35 v s = 2.5v a v = ?1 r l = 1k 1v/div 0v 200ns/div 623345 g36 v s = 2.5v a v = 1 r l = 1k 50mv/div 0v 5v ?5v 200ns/div 623345 g37 v s = 5v a v = 1 r l = 1k 2v/div 0v 0v 200ns/div 623345 g38 v s = 2.5v a v = 3 v in 1v/div v out 2v/div pin voltage (v) supply current (ma) ?1.0 623345 g39 ?2.0 0 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 1.0 2.0 t a = 125c v s = 2.5v t a = 25c t a = ?55c pin voltage (v) enable pin current (a) 623345 g40 35 30 25 20 15 10 5 0 t a = 125c v s = 2.5v a v = 1 t a = 25c t a = ?55c ?1.0 ?2.0 0 1.0 2.0 0v 5v 0.5v 0v 200s/div 623345 g41 v s = 2.5v v in = 0.5v a v = 1 r l = 1k v out enable
15 623345fc lt6233/lt6233-10 lt6234/lt6235 typical p er f or m ance c harac t eris t ics open-loop gain and phase vs frequency gain bandwidth and phase margin vs supply voltage gain bandwidth vs resistor load common mode rejection ratio vs frequency maximum undistorted output vs frequency 2nd and 3rd harmonic distortion vs frequency gain bandwidth and phase margin vs temperature slew rate vs temperature series output resistor and overshoot vs capacitive load (lt6233-10) temperature (c) ?50 gain bandwidth (mhz) 25 623345 g42 ?25 0 50 450 400 350 300 200 250 phase margin (deg) 70 60 50 40 75 100 125 v s = 5v v s = 3v, 0v v s = 5v v s = 3v, 0v phase margin gain bandwidth a v = 10 temperature (c) ?55 slew rate (v/s) 5 623345 g43 ?35 ?15 45 140 160 180 200 120 100 60 0 20 80 40 85 25 65 105 125 v s = 5v falling v s = 2.5v rising a v = ?10 r f = 1k r g = 100 v s = 2.5v falling v s = 5v rising capacitive load (pf) 10 overshoot (%) 70 60 50 40 30 20 10 0 100 1000 10000 623345 g44 v s = 5v, 0v a v = 10 r s = 10 r s = 20 r s = 50 frequency (hz) gain (db) 80 70 60 50 40 30 20 10 0 ?10 ?20 phase (deg) 120 100 80 60 40 20 0 ?20 ?40 ?60 ?80 100k 10m 100m 1g 623345 g45 1m a v = 10 c l = 5pf r l = 1k v cm = v s /2 v s = 3v, 0v v s = 5v phase gain v s = 5v v s = 3v, 0v total supply voltage (v) 0 gain bandwidth (mhz) 6 623345 g46 2 4 8 450 375 300 225 phase margin (deg) 100 50 0 10 12 phase margin gain bandwidth t a = 25c a v = 10 c l = 5pf r l = 1k total resistor load () (includes feedback r) 0 gain bandwidth (mhz) 600 623345 g47 200 400 800 400 350 300 200 150 100 50 0 250 1000 a v = 10 v s = 5v t a = 25c r f = 1k r g = 100 frequency (hz) 20 common mode rejection ratio (db) 40 60 80 120 100 10k 1g 100m 100k 10m 623345 g48 0 1m v s = 5v, 0v v cm = v s /2 frequency (hz) 10k output voltage swing (v p-p ) 10 9 8 7 6 5 4 3 2 1 0 100k 1m 10m 623345 g49 v s = 5v t a = 25c a v = 10 hd2, hd3 40dbc frequency (hz) 10k distortion (dbc) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g50 v s = 2.5v a v = 10 v out = 2v p-p r l = 100, 3rd r l = 100, 2nd r l = 1k, 3rd r l = 1k, 2nd
lt6233/lt6233-10 lt6234/lt6235 16 623345fc typical p er f or m ance c harac t eris t ics 2nd and 3rd harmonic distortion vs frequency large-signal response output-overload recovery (lt6233-10) small-signal response input referred high frequency noise spectrum frequency (hz) 10k distortion (dbc) ?30 ?40 ?50 ?60 ?70 ?80 ?90 ?100 100k 1m 10m 623345 g51 v s = 5v a v = 10 v out = 2v p-p r l = 100, 3rd r l = 100, 2nd r l = 1k, 3rd r l = 1k, 2nd 0v 100ns/div 623345 g52 v s = 5v a v = 10 r f = 900 r g = 100 v out 2v/div 0v 100ns/div 623345 g53 v s = 5v, 0v a v = 10 r f = 900 r g = 100 v out 2v/div 0v v in 0.5v/div 2.5v 100ns/div 623345 g54 v s = 5v, 0v a v = 10 r f = 900 r g = 100 v out 100mv/div 10 0 2mhz/div 623345 g55 100khz 20mhz 1nv/ hz/div
17 623345fc lt6233/lt6233-10 lt6234/lt6235 a pplica t ions i n f or m a t ion figure 1. simplifed schematic figure 2. v s = 2.5v, a v = 1 with large overdrive enable desd6 desd5 ?v +v +v in ?v in +v 623345 f01 bias differential drive generator v out +v c m i 1 ?v desd3 ?v ?v desd4 +v desd1 ?v desd2 +v d1 c1 d2 q5 q6 q4 q2 q3 q1 2.5v ?2.5v 0v 500s/div 623345 f02 1v/div amplifer characteristics figure 1 is a simplifed schematic of the lt6233/lt6234/ lt6235, which has a pair of low noise input transistors q1 and q2. a simple current mirror q3/q4 converts the differential signal to a single-ended output, and these transistors are degenerated to reduce their contribution to the overall noise. capacitor c1 reduces the unity-cross frequency and im- proves the frequency stability without degrading the gain bandwidth of the amplifer. capacitor c m sets the overall amplifer gain bandwidth. the differential drive generator supplies current to transistors q5 and q6 that swing the output from rail-to-rail. input protection there are back-to-back diodes, d1 and d2 across the + and C inputs of these amplifers to limit the differential input voltage to 0.7v. the inputs of the lt6233/lt6234/lt6235 do not have internal resistors in series with the input tran- sistors. this technique is often used to protect the input devices from overvoltage that causes excessive current to fow. the addition of these resistors would signifcantly degrade the low noise voltage of these amplifers. for instance, a 100 resistor in series with each input would generate 1.8nv/ hz of noise, and the total amplifer noise voltage would rise from 1.9nv/ hz to 2.6nv/hz. once the input differential voltage exceeds 0.7v, steady-state current conducted through the protection diodes should be limited to 40ma. this implies 25 of protection re- sistance is necessary per volt of overdrive beyond 0.7v. these input diodes are rugged enough to handle transient currents due to amplifer slew rate overdrive and clipping without protection resistors. the photo of figure 2 shows the output response to an input overdrive with the amplifer connected as a voltage follower. with the input signal low, current source i 1 satu- rates and the differential drive generator drives q6 into saturation so the output voltage swings all the way to v C . the input can swing positive until transistor q2 saturates into current mirror q3/q4. when saturation occurs, the output tries to phase invert, but diode d2 conducts current from the signal source to the output through the feedback connection. the output is clamped a diode drop below the input. in this photo, the input signal generator is limiting at about 20ma.
lt6233/lt6233-10 lt6234/lt6235 18 623345fc a pplica t ions i n f or m a t ion with the amplifer connected in a gain of a v 2, the output can invert with very heavy overdrive. to avoid this inver - sion, limit the input overdrive to 0.5v beyond the power supply rails. esd the lt6233/lt6234/lt6235 have reverse-biased esd protection diodes on all inputs and outputs as shown in figure 1. if these pins are forced beyond either supply, unlimited current will fow through these diodes. if the current is transient and limited to one hundred milliamps or less, no damage to the device will occur. noise the noise voltage of the lt6233/lt6234/lt6235 is equivalent to that of a 225 resistor, and for the lowest possible noise it is desirable to keep the source and feed - back resistance at or below this value, i.e., r s + r g ||r fb 225. with r s + r g ||r fb = 225 the total noise of the amplifer is: e n = (1.9nv) 2 + (1.9nv) 2 = 2.69nv/ hz below this resistance value, the amplifer dominates the noise, but in the region between 225 and about 30k, the noise is dominated by the resistor thermal noise. as the total resistance is further increased beyond 30k, the amplifer noise current multiplied by the total resistance eventually dominates the noise. the product of e n ? i supply is an interesting way to gauge low noise amplifers. most low noise amplifers with low e n have high i supply current. in applications that require low noise voltage with the lowest possible supply current, this product can prove to be enlightening. the lt6233/lt6234/lt6235 have an e n ? i supply product of only 2.1 per amplifer, yet it is common to see amplifers with similar noise specifcations to have e n ? i supply as high as 13.5. for a complete discussion of amplifer noise, see the lt1028 data sheet. enable pin the lt6233 and lt6233-10 include an enable pin that shuts down the amplifer to 10a maximum supply cur - rent. the enable pin must be driven low to operate the amplifer with normal supply current. the enable pin must be driven high to within 0.35v of v + to shut down the supply current. this can be accomplished with simple gate logic; however care must be taken if the logic and the lt6233 operate from different supplies. if this is the case, then open-drain logic can be used with a pull-up resis- tor to ensure that the amplifer remains off. see typical performance characteristics. the output leakage current when disabled is very low; however, current can fow into the input protection diodes d1 and d2 if the output voltage exceeds the input voltage by a diode drop.
19 623345fc lt6233/lt6233-10 lt6234/lt6235 typical a pplica t ions single supply, low noise, low power, bandpass filter with gain = 10 frequency response plot of bandpass filter low power, low noise, single supply, instrumentation amplifer with gain = 100 r2 732 r4 10k c3 0.1f en f 0 = 1 = 1mhz c = c1,c2 r = r1 = r2 f 0 = ( 732 ) mhz, maximum f 0 = 1mhz f ?3db = f 0 a v = 20db at f 0 e n = 6v rms input referred i s = 1.5ma for v + = 5v 623345 f03 0.1f c2 47pf c1 1000pf r3 10k r1 732 v out v + v in 2rc r 2.5 + ? lt6233 frequency (hz) 100k gain (db) 23 3 ?7 1m 10m 623345 f04 + ? r14 2k en u3 lt6233 v out = 100 (v in2 ? v in1 ) gain = ( r2 + 1 ) ( r10 ) input resistance = r5 = r6 f ?3db = 310hz to 2.5mhz e n = 10v rms input referred i s = 4.7ma for v s = 5v, 0v 623345 f05 c8 68pf c3 1f r13 2k r10 511 r15 88.7 r16 88.7 r4 511 r3 30.9 r1 30.9 r2 511 v out v in1 v in2 v + r1 r15 c9 68pf r12 511 + ? en u2 lt6233-10 v + c1 1f c2 2200pf + ? en u1 lt6233-10 v + r5 511 r6 511 c4 10f r1 = r3 r2 = r4 r10 = r12 r15 = r16
lt6233/lt6233-10 lt6234/lt6235 20 623345fc p ackage descrip t ion s6 package 6-lead plastic tsot-23 (reference ltc dwg # 05-08-1636) 1.50 ? 1.75 (note 4) 2.80 bsc 0.30 ? 0.45 6 plcs (note 3) datum ?a? 0.09 ? 0.20 (note 3) s6 tsot-23 0302 2.90 bsc (note 4) 0.95 bsc 1.90 bsc 0.80 ? 0.90 1.00 max 0.01 ? 0.10 0.20 bsc 0.30 ? 0.50 ref pin one id note: 1. dimensions are in millimeters 2. drawing not to scale 3. dimensions are inclusive of plating 4. dimensions are exclusive of mold flash and metal burr 5. mold flash shall not exceed 0.254mm 6. jedec package reference is mo-193 3.85 max 0.62 max 0.95 ref recommended solder pad layout per ipc calculator 1.4 min 2.62 ref 1.22 ref
21 623345fc lt6233/lt6233-10 lt6234/lt6235 p ackage descrip t ion dd package 8-lead plastic dfn (3mm 3mm) (reference ltc dwg # 05-08-1698 rev c) 3.00 0.10 (4 sides) note: 1. drawing to be made a jedec package outline m0-229 variation of (weed-1) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on top and bottom of package 0.40 0.10 bottom view?exposed pad 1.65 0.10 (2 sides) 0.75 0.05 r = 0.125 typ 2.38 0.10 1 4 8 5 pin 1 top mark (note 6) 0.200 ref 0.00 ? 0.05 (dd8) dfn 0509 rev c 0.25 0.05 2.38 0.05 recommended solder pad pitch and dimensions apply solder mask to areas that are not soldered 1.65 0.05 (2 sides) 2.10 0.05 0.50 bsc 0.70 0.05 3.5 0.05 package outline 0.25 0.05 0.50 bsc
lt6233/lt6233-10 lt6234/lt6235 22 623345fc p ackage descrip t ion s8 package 8-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610) .016 ? .050 (0.406 ? 1.270) .010 ? .020 (0.254 ? 0.508) 45 0? 8 typ .008 ? .010 (0.203 ? 0.254) so8 0303 .053 ? .069 (1.346 ? 1.752) .014 ? .019 (0.355 ? 0.483) typ .004 ? .010 (0.101 ? 0.254) .050 (1.270) bsc 1 2 3 4 .150 ? .157 (3.810 ? 3.988) note 3 8 7 6 5 .189 ? .197 (4.801 ? 5.004) note 3 .228 ? .244 (5.791 ? 6.197) .245 min .160 .005 recommended solder pad layout .045 .005 .050 bsc .030 .005 typ inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) gn package 16-lead plastic ssop (narrow .150 inch) (reference ltc dwg # 05-08-1641) gn16 (ssop) 0204 1 2 3 4 5 6 7 8 .229 ? .244 (5.817 ? 6.198) .150 ? .157** (3.810 ? 3.988) 16 15 14 13 .189 ? .196* (4.801 ? 4.978) 12 11 10 9 .016 ? .050 (0.406 ? 1.270) .015 .004 (0.38 0.10) 45 0 ? 8 typ .007 ? .0098 (0.178 ? 0.249) .0532 ? .0688 (1.35 ? 1.75) .008 ? .012 (0.203 ? 0.305) typ .004 ? .0098 (0.102 ? 0.249) .0250 (0.635) bsc .009 (0.229) ref .254 min recommended solder pad layout .150 ? .165 .0250 bsc .0165 .0015 .045 .005 * dimension does not include mold flash. mold flash shall not exceed 0.006" (0.152mm) per side ** dimension does not include interlead flash. interlead flash shall not exceed 0.010" (0.254mm) per side inches (millimeters) note: 1. controlling dimension: inches 2. dimensions are in 3. drawing not to scale
23 623345fc lt6233/lt6233-10 lt6234/lt6235 information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa - tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. r evision h is t ory rev date description page number c 1/11 revised y-axis lable on curve g40 in typical performance characteristics updated enable pin section in applications information 14 18 (revision history begins at rev c)
lt6233/lt6233-10 lt6234/lt6235 24 623345fc linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax : (408) 434-0507 www.linear.com linear technology corporation 2003 lt 0111 rev c ? printed in usa r ela t e d p ar t s typical a pplica t ions low power avalanche photodiode transimpedance amplifer i s = 1.2ma photodiode amplifer time domain response part number description comments lt1028 single, ultralow noise 50mhz op amp 0.85nv/ hz lt1677 single, low noise rail-to-rail amplifer 3v operation, 2.5ma, 4.5nv/ hz , 60v max v os lt1806/lt1807 single/dual, low noise 325mhz rail-to-rail amplifer 2.5v operation, 550v max v os , 3.5nv/ hz lt6200/lt6201 single/dual, low noise 165mhz 0.95nvhz, rail-to-rail input and output lt6202/lt6203/lt6204 single/dual/quad, low noise, rail-to-rail amplifer 1.9nv/ hz, 3ma max, 100mhz gain bandwidth the lt6233 is applied as a transimpedance amplifer with an i-to-v conversion gain of 10k set by r1. the lt6233 is ideally suited to this application because of its low in- put offset voltage and current, and its low noise. this is because the 10k resistor has an inherent thermal noise of 13nv/ hz or 1.3pa/hz at room temperature, while the lt6233 contributes only 2nv and 0.8pa/ hz. so, with respect to both voltage and current noises, the lt6233 is actually quieter than the gain resistor. the circuit uses an avalanche photodiode with the cathode biased to approximately 200v. when light is incident on the photodiode, it induces a current i pd which fows into the amplifer circuit. the amplifer output falls negative to maintain balance at its inputs. the transfer function is therefore v out = Ci pd ? 10k. c1 ensures stability and good settling characteristics. output offset was measured at better than 500v , so low in part because r2 serves to cancel the dc effects of bias current. output noise was measured at below 1mv p-p on a 20mhz measurement bandwidth, with c2 shunting r2s thermal noise. as shown in the scope photo, the rise time is 45ns, indicating a signal bandwidth of 7.8mhz. + ? r1 10k r2 10k c2 0.1f 5v ?5v enable lt6233 200v bias advanced photonix 012-70-62-541 www.advancedphotonix.com output offset = 500v typical bandwidth = 7.8mhz output noise = 1mv p-p (20mhz measurement bw) 623345 ta02a c1 2.7pf 100ns/div 623345 ta02b 50mv/div


▲Up To Search▲   

 
Price & Availability of LT6234CDDTRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X